

GEOTECHNICAL CONSIDERATIONS FOR TUNNELING IN THE HRBT EXPANSION PROJECT

Southeastern Transportation Geotechnical Engineering Conference

September 16, 2025

Ramesh Neupane, PhD, PE, PMP, DBIA, VDOT
Todd Grifka, PE, HRBT/WSP
Md Touhidul Islam, PE, VDOT

Presentation Outline

- □ Introduction
 - Geology
 - Project Overview
- Subsurface Conditions
- ☐ Historical Construction
- □ Tunnel Boring Machine
- □ Ground Improvement
 - Deep Mixing
 - Jet Grouting

Geologic Provinces of Virginia

General Geology of Virginia's Coastal Plain

- ☐ Easternmost geologic province of Virginia
- ☐ Extends from the Fall Line to the Atlantic Ocean and Chesapeake Bay
- Made up of unconsolidated or semi-consolidated marine and fluvial sediments
- ☐ Common materials: sand, silt, clay and gravel
- □ Sediments thickness increases eastward
- ☐ Key geotechnical features: soft and compressible soils, high ground water table, significant lateral and vertical variability over short distance.

Geologic Cross Section at Coastal Plain

Cross Section from Richmond to Norfolk (George, 1977)

Project Overview

□ Soil variations at north and south islands

- HRBT has one "good island" and one "bad island"
- North Island
 - Sand and Silty sand
- South Island
 - Thick layer of clay overlies the sandy soil
 - Maximum thickness of clay layer is about 80 feet
 - Normally consolidated, partially organic and very compressible

General Plan and Profile (Rafaeli 1971)

- Mitigation of soft material at HRBT south island for each tunnel
 - 1957 Excavation and Sand Fill
 - Clay was removed and replaced by hydraulic fill
 - 1976 Surcharge and Sand Drains
 - Accelerate the consolidation of clay to minimize the post-construction settlement
 - Estimated maximum settlement was greater than 10 feet under the full surcharge load
 - 2025 Cementitious ground improvement
 - Deep mixing and jet grouting

Geotechnical Index Properties (South Island)

	Artificial Fill	Alluvial Coarse- Grained	Alluvial Fine- Grained	Alluvial Organic	Yorktown Coarse- Grained	Yorktown Fine- Grained	Eastover Coarse- Grained
Unit Weight (pcf)	119	115	115	102	125	115	115
Moisture Content (%)	18	25	36	53	29	33	27
Liquid Limit			40	82		56	
Fines Content (%)	4	24	73	87	22	81	25
Organic Content (%)				<12			
OCR			1.5	1.4			

North Island - 1957

North Island - 1955

North Island - Ongoing Construction

North Island - End of Construction in 1957

South Island - 1957

South Island - 1955

South Island - Ongoing Construction

South Island - End of Construction in 1957

Cross-Section of South Island Expansion in 1970's

South Island

Construction of South Island Expansion with Surcharge – 1970's

Sand Drain Installation on South Island Expansion – 1970s

North Island

Construction of North Island Expansion with Surcharge – 1970's

Immersed Tube Tunnel Placement – 1970s

Tunnel Boring Machine (TBM) – General Information

- ☐ First bored tunnel for VDOT
- Diameter of TBM cutterhead is 46.5 feet
- 173 feet below the water surface
- □ 50 feet deeper than existing tunnels
- Each bored tunnel is about 1.5 miles long

Tunnel Boring Machine (TBM) – Support Requirement

Bearing Failure

Thrust Force Eccentricity

Tunnel Boring Machine (TBM) - Production

- Higher fine contents
 less production
 (purple) less
 number of rings
- Lower fine contents
 higher production
 (green) more
 number of rings

2021 North Island – Before Ground Improvement

2021 South Island – Before Ground Improvement

Deep Soil Mixing

- Tunneling Support and Stability
 - Short-term tunnel constructability (line and grade control)
 - Prevents TBM tilt from uneven weight distribution
 - Maximizes thrust system by operating near allowable face pressure
 - Long-term settlement control for completed tunnel
 - Reduced secondary compression caused by unloading effects of fine-grained deposits
 - Prevents excessive tunnel liner stresses as it transitions offshore

Deep Soil Mixing Layout

Deep Soil Mixing - Production

Procedure

- ☐ Top-down approach
- □ Tool insertion
- Mix in-situ soil with bentonite slurry to depth
- ☐ Grout Injection during tool withdrawal
- □ Obtain "wet grab" samples of improved ground for laboratory testing

Deep Soil Mixing - Production

Statistics

- ☐ 520 Total DSM "barrettes"
- ☐ Production from June 2021 to April 2022 (10 months)
- ☐ 32 full depth cores
- □ 275 compressive strength tests
- ☐ 550 sets of wet sample cylinders

Deep Soil Mixing

Performance Requirements

Test Parameter	Acceptance Criteria		
Unconfined Compressive Strength	80% of cored sample tests must equal or exceed		
(each individual element)	145 PSI		
Unconfined Compressive Strength	90% of cored sample tests must equal or exceed		
(all elements across the CDSM site)	145 PSI		
Unconfined Compressive Strength	90% of cored sample tests shall be less than		
(all elements across the CDSM site)	1000 PSI		
Specific Gravity	Within 3% of specified value (per mix design)		
Top Elevation Tolerance	Within 4 inches of specified elevation		
Bottom Elevation Tolerance	Within 4 inches of specified elevation		
Vertical Alignment Tolerance	Within 1% of true vertical		

- ☐ Core Recovery > 80%
- ☐ UCS for "wet grab (in-situ)" cylinders > 120 psi

Jet Grout

☐ Break-in / Break-out Blocks

- Allows tunnel rings to be grouted before TBM builds to soil face stabilization slurry pressure
- Allows for possible "open air" interventions to visually inspect tooling damage
- Allows the TBM to build slurry pressures before excavating into the soil

■ Approach Excavation Plug

- Provides a water cutoff barrier to reduce or eliminate dewatering
- Provides lateral stability for slurry wall SOE below excavation level

Jet Grouting

North Island

Jet Grouting - Production

Jet Grouting Triple Fluid System

Triple Fluid

- Bottom-up Installation
- ☐ Three jets are lifted and rotated
- Water and compressed air erode and remove part of soil
- Grout mixes with soil and solidifies to form a cylindrical column of treated soil (soilcrete)

Jet Grouting – Production

□ Design Geometry

- Triangular pattern
- Overlap = 15%
- Diameter = 10 ft

Design Parameters

Cement/Water (weight) = 0.9 to 1.1

□ Verification Testing

- Coring (single, double overlap, triple overlap)
- Permeability

Jet Grouting - Production

- □ Sequence of Installation
 - 24 hours before jet grouting next to installed column
- □ Coring
 - 2 cores at every 900 ft²
 - Coring shall extend from 3 ft below the top of the column to 5 ft below the bottom of the ground improvement zone
 - Double tube core barrel
- Structure Monitoring
 - Monitor existing structures during jet grouting for settlement, heave, and others

Jet Grouting – Production

Jet Grouting - Production

Statistics

- □ 2,246 total jet grout columns
- □ Production from June 2021 to December 2023 (30 months)
- ☐ 253 full depth cores
- 400+ compressive strength tests
- ☐ 252 permeability "packer" tests

Jet Grouting

Performance Requirements

	Soil Type	Target Value			
Jet Grout Function		28 Day f 'c (psi)		*K (ft/s)	
		Min	Max	Max	
South Approach Structure	Granular	200	-	Upper 3.28E-08 Lower 3.28E-07	
	Cohesive	200	-	Upper 3.28E-08 Lower 3.28E-07	
North Approach Structure	Granular	250	-	Upper 3.28E-08 Lower 3.28E-07	
	Cohesive	200	-	Upper 3.28E-08 Lower 3.28E-07	
TBM Break-in / Break-out Blocks	Granular	250	1000	Upper 3.28E-08 Lower 3.28E-07	
	Cohesive	200	1000	Upper 3.28E-08 Lower 3.28E-07	

Permeability "Packer" Test

Core Recovery > 85%

Core Recovery Index (Yoshitake, et.al. 2003)

North Island – Jet Grout

2021 North Island – Before Ground Improvement

2025 North Island – After Ground Improvement

South Island – Jet Grout and Deep Soil Mixing

2021 South Island – Before Ground Improvement

2025 South Island – After Ground Improvement

Questions?

